Improving File System
Usability, Performance and
Reliability with Magnetic RAM

Ethan L. Miller
Storage Systems Research Center
Institute for Scalable Scientific Data Management
University of California, Santa Cruz

i.s)snn

What is Magnetic RAM?

% Magnetic RAM (MRAM) is
e Random access: speed comparable to DRAM
* Non-volatile

* MRAM is byte-accessible
e No need to read or write full blocks

“ MRAM doesn't suffer wear

* No need for wear-leveling
* No limit on humber of writes

* MRAM is how in production
* Freescale has been making chips for over two months
* MRAM is (currently) expensive

o Eventually cost comparable to DRAM

e v, o New produc‘l‘ -> expensive!
., ISSPDM
7

= S

Why file systems for MRAM?

* File systems traditionally use disk as non-volatile
storage
e Large blocks / transfer sizes
e Expensive seeks
 Metadata size relatively unimportant

* MRAM provides

 Long-term storage
e Byte-addressability with low seek time
e High-speed access to complex metadata

<+ Problems:

e Cost is amajor issue (> DRAM)
* File systems aren't designed to take advantage of MRAM

* What should a file system for MRAM look like?

" xAC € oy
')_'.":) * il l.'.'“;,“
e K iSSDH
3 e g
J/f J
43 4

o

What should we keep in MRAM?

* Memory (nhon-volatile or otherwise) is expensive
o Keep small items in it?
o Keep recently used items in it?

* Large (data) transfers don't benefit as much from
memory residence

* Most transfers are large and sequential
e Latency can be hidden with prefetching and writebehind

* Metadata is perfect for MRAM!

Small transfers (often a word or two)
Still very large: about 1% of total file system size

Reduce memory demands with new metadata structures and
compression

Allows the construction of richer metadata structures that
might require non-sequential accesses

L - ISSDM

e J—

Outline
* Introduction fo MRAM for file systems

% LiFS: Linking File System
* More effective searching and organization
e Made possible by MRAM's speed

* Compressing metadata in MRAM
* Making the most of a scarce resource

* MRAM reliability techniques
* Making MRAM safe for file systems

\:(’4:" "':‘" R
RO Peaimiins (0,
2" ;O % o ,
W isspMm
S 5 . _".f 1 a
/J

=
»

- 2
i
J}::{:.._T' N S

=t i

The problem with metadata

* The number of files is dramatically increasing

e Disk capacity is far larger
* Applications like to use lots of files

* How can we organize them?

e Directories?
- Good model for few files, but not for billions!

- Difficult for g?eneral directed graphs: files are
typically in only one directory

e Applications?
- Many apps manage their own files
- Works (somewhat) but makes sharing difficult

G yﬂ:‘:. e - oy,
Tejd Al
=N, . IsSsbM
/J/f :,,'. "_ .
42 122"

The solution: attributes & links

* Extend application approach into the file system
* Provide primitives to manage the relationships
o Allow multiple apps to use the same files and links

* Sharing is easy
e File system maintains the relationships

* Searching is now possible...

Application A Application B

File system

(Attributes Relationships)
Search

MRAM makes this possible

name: foo
user: elm,carlosm

<+ Directed links between
files to show relationships

< Links have attributes

¢ EXPI"@SS The Type of name: bar
relationship between the user:carlosm name: bar
files user: elm

e Describe the link itself

*t' !‘.oTs of links means lots of
see kS" name: X

e MRAM makes this fast user: elm |
% Links are small elm: path = “foo/x” Q

| : path= “foo/bar”
e MRAM has low latency FarosT PR RO | h = “foo/bar”
elm: path = "too/bar

% Searching can be slow carlosm: no path!

i s;ﬁlﬁeep the indices in MRAM

= S

New system calls

System Call Function

rellink Create relational link

rmlink Remove relational link

setlinkattr Set attributes on link

Return handle to all the links

openlinkset o a fila

Get name and attributes of next

readlinkset .
link in the set

o123E Sy
o} e,
> —
3
: ISSDM
2

e J—

Implementation

* FUSE: maps VFS calls user space
back into user space

* MRAM: system memory
locked into DRAM

* Not yet using MRAM...

< Custom MRAM allocator
with fixed-size pools

e Efficient to allocate and
free small objects

“ Optimizations
e String table i ’

e Full path name cache Linux VFS FUSE kernel module
kernel space

client app user space daemon

u(’.'.". "' og
Reoltae. 7 lo,
2) : 4 o
= 'Sf DM
-)
=4y ?

o
A’ =

Evaluation

<+ Metrics

e Traditional FS operations: compare to other file
systems

 New FS operations: scalability
e FUSE overhead

* Experimental setup

e Sun workstation running Linux 2.6.9-acll
e AMD Opteron 150 @ 2.4 GHz
e 1 GB DRAM

Performance: Files

* Create a directory free
with empty files
e 15620 files

* Read all of the files

* File systems are "fresh”

* LiIFS is competitive

LiFS w/FUSE
ext2 w/FUSE
B XFS w/FUSE

A

3

~~
2
O
c
O
O
()
(g
~9
c
RS,
)
S
>
a

N |

Create Files Read Empty Files

o

Performance: File Attributes

W Get 2 Attrs

B Set2Attrs ext2 (FUSE) SetAttr
LiFS (FUSE) SetAttr

ext?2 (FUSE) GetAttr
LiFS (FUSE) GetAttr

U
o
S

N
(O

o
~
o1
o

~~
(72
O
c
O
O
)
(7]
~—"
c
RS
)
(4]
L
>
a

Duration (seconds)

LiFS (FUSE)
ext2 (RD)

ext2 (FUSE)

LiFS (FUSE/RD)
ext2 (FUSE/RD)

Create / Remove Directories

Create Dirs - Remove Dirs

O
@)

o
o

~~
(72
o
c
O
O
(),
wm
~—"
c
O
)
(4]
.
>
a

w
O

ext2 (FUSE) ext2 (FUSE/RD) LiFS (FUSE) LiFS (FUSE/RD)

| 11,110 directories
LiFS outperforms ext2 with FUSE and RAM disk

L x29€ O)yg
sands i
S0 ¢ isspmM
/-_';. "‘ il 1'0
/_ff- = =, ': :._

Create / Delete LIFS Links

B 2Acwrs/Link B 30Awrs/Link * Test on 15,620 files

3.00 “ Processed 15,620 random
links

* More attributes make
link identification slower
e Need to traverse

structures to identify
desired link

N
N
U1

U
o

~
(%)
O
c
O
O
Q
(7]
~—"
c
.9
-
4]
.
>
a

o
N
U1

Compressing Metadata in
MRAM

* LiFS promises lots of additional functionality,
but...

* MRAM is expensivel

e Currently, much more than DRAM
e Eventually, costs drop to about DRAM costs

* Important to save space in MRAM if possible:
compress metadata

e Reduces MRAM requirements

e May improve speed by reducing the amount of data
moved

e Byte-accessible MRAM makes this feasible

Metadata in Unix

< MZTGdGTG is stored in Protection mode | Link count
inodes

* Timestamps
e Ownership Block count
* File size User

Size

e Link count Group

D irectories poim' to Generation
inodes Flags

* Inodes themselves don't Flegtie (e
contain names

* Total size is about 54 eSS (HHHe
bytes

e Times, size are 64 bit
fields

Modify time

Compressing metadata

% Most metadata is compressible
e Integers have small values (link count, size)
e Times can be expressed as offsets
e Permissions can be table-based
Compression is effective
e 15-20 bytes per inode on typical file systems (factor of 2.5-3.5)
e Tnodes are variable-sized: compression rate varies

Can this be used in a real file system?
How does it affect performance?

45 . Ext2 . Gamma |

40
35

30
250
20
15
10

I I
Mode UGID Size Ctime Mt ime At ime Links
Field

Inodes and file data

* Fields in the inode are gamma compressed

* Small numbers compress very well
e Timestamps are encoded as deltas from earliest time

<+ Permissions are table-based

e Table contains all unique combinations of «<user ID, group ID,

permissions>
- Most common combinations stored early in the table

e Location in table of this inode's permissions is gamma-
compressed

e Table could easily be extended to handle ACLs...

* File data stored in compressed blocks

e Linked list of block pointers
e Random seeks not slow: pointer chasing is in RAM

e Hybrid on-disk / MRAM-based system will need some minor
changes

SSDM

S — -

Separation of MRAM and DRAM

* Most memory-based file systems simply use the
caching structures as "permanent” storage

e Very fast: almost no copying

e Inefficient: caches designed for very fast lookup at
the cost of higher memory usage

e Unsuitable for MRAM / DRAM systems
- Must build the whole system from MRAM
- No way to "start clean”

* MRAMFS explicitly copies from non-volatile
memory to DRAM

* Metadata and data copied back and forth
* Can be slower for large operations

* May be more reliable: fewer code points where
L % jssphermanent store is accessed and modified

Postmark benchmark results

[
b

B Transactions Taller bars = faster performance
. Creations only

[
[

e
o

Creations total

Eead MB/s
. MWrite MB/s

MRAM MREAM ext?2 JF5 ReiserF5 JFF52

o
-
b4
D
o
-
D
-
-~
-
14
o
9
-
D
LJ
-
T
=
[
o
-
[
D
n

o = O NOW A S & N WD

Comp Uncomp

Inodes Inodes All file systems in main memory
All file systems faster than disk-based

Postmark results

* All of the file systems run in-memory
* Ext2 slowest by far: sequential directory handling
e JFS very fast
* MRAMFS comparable to ReiserFS
e MRAMFS slightly slower than XFS, JFFS2

* All but JFFS2 are uncompressed

 Memory usage higher by a factor of about 3
e JFFS2 compresses blocks: not as efficient for inodes

* Compressed inodes faster in MRAMFS!

e Less metadata copied: faster performance

e Compression can provide speed increase by avoiding
accesses to (relatively) slow DRAM

o123E S¥
_XO" e,
) 2 4
2 & ISSDM
2

e J—

Compression reduces MRAM
demand

* File systems will run much faster with non-volatile
memory
* Don't need to read metadata from disk
* Don't write metadata back to disk
* Fast access to parts of an inode

* Compression of metadata can reduce memory usage and
thus cost

e Factor of 2-3 or more

* May save time, too: less data movement between (relatively)
slow main memory and cache

“ Alternate file structures can make efficient use of
MRAM and other non-volatile memories

e Relatively small allocation chunks

e Simple, reliable file system design
ish .No need for complex structures that may introduce bugs

S

Making MRAM file systems safe

* MRAM advantages

e Fast metadata access

e Richer metadata structures

e Reduces sync and transfer overhead
* File system log for fast recovery

* Fast, on-line consistency checking

* MRAM disadvantages

e Wild writes from buggy software

- Potentially much less "control” than with disk-based
file systems: no centralized I/0 access routines

e Bit flips on MRAM
* How can this corruption can be prevented?

G g’."z € OVey
)_'.":')" :. : l.'.'“;,“ Q,
0 ¢ IsspM
9, S /
{f, -lu o /._.f‘

Solution: Two-Level Approach

* Attack the problem on multiple levels

e Guard against memory corruption due to OS mistakes

e Check file system operations to make sure that
they're correct

* Memory consistency

* Page-level write protection

e Error Correcting Codes (carefully chosen)
* File system consistency

e Log/periodically check structure changes
e On-line checks (log replay)

G yﬂ:‘:. e - oy,
Tejd Al
-, . ISSDM
/J/f :,,'. "_ .
42 122"

Design: Protected NVRAM

* MRAM is partitioned into regions (unprotected/protected)

* Protected region
e Collection of (data, parity)-blocks
 Worite protection at page-level (4KB)
e Each (data, parity)-block is a codeword

* EVENODD as ECC

* Requires systematic encoding

Protected page MRAM
Data

Each cell represents
an encoded block

Design: Mapping Data to
EVENODD

% Visualize the data block as a 1D array mapped to
2D array

* Can tolerate any one column error (bursts)

Data block EVENODD matrix

S9SSaIppPY
<

— Parity (ECC)

Addresses

‘u(’.;‘."' S

Tejs AL

s .

" * isspMm

) . 2
| e
= !‘ffJ‘." 4 5:131-{:__)

Write Algorithm: identify
location

Step |:ldentify address and write size

write <addr, data, size>

H

y
]

0

Data Page Parity Page

Write Algorithm: copy to scratch

Step 2: Copy corresponding data/parity
sections out to “scratch”

Scratch

r\/_ Copy to scratch &

Data Page Parity Page

Write Algorithm: update In
scratch area

Step 3:Write change in scratch region, compute parity

Write modified data (Scratch

[

- Compute and

write parit

Data Page Parity Page

Write Algorithm: write back
changes

Step 4: Unlock pages and write changes (vulnerable)

Scratch
[] []

d'l

Data Page

Write Algorithm: check writes

Step 5: Lock pages and check for errors

v v
[] []

0

Data Page Parity Page

Design — Transaction Log

Transaction Log State Table

Created for
each fs call Index State

<|D,> S(ID)
<ID> | S(ID»)

<ID«> | S(IDy)

consist of multiple

operations on

multiple inodes . inode state
inode number

Each transaction may ! \

Consistency Checking

Transaction table (constructed from log)

-

Clustered log entries

_

Pending inode List Files that have NOT been checked

j.ﬂ
o) 5

Consistency Checking
Algorithm

% Initialize new log and state table

* Insert entries into transaction table and pending
list

* For each inode on the pending list

o If entry exists in "live” state table
- Get next inode

e If entry does not exist in the "live” state table
- Fetch inode state from the "old" state table
- Replay all ops in the transaction table
- Compare replayed inode to “live" inode

e Inconsistency if replay does not match "live” inode
* Requires O(1) lookup and replaying operations
wom <~ Block checks on NVRAM

¥ g.' E
Ll RE- %'
- y i
" . ISsPpM
E 3‘-_. ‘/.‘
= N >

Prototype Implementation

* Implemented in LiFS

* Implemented protected regions in MRAM
allocator

e Required additional calls in the interface
°* mprotect

« EVENODD
* Logged metadata operations in LiFS calls
o All except extents and xattrs
* Implemented On-Line Consistency Checker

e Currently outside of LiFS, but can read LiFS log
e Currently builds structures outside of protected area
e Persistent structures can be stored in protected

‘b_u_rg.'.'i 'SF
Sl ea
e © IssD

A . - //

Prototype Performance

“ Setup
e 200 MB protected "MRAM" region
e LiFS running through FUSE
e EVENODD(96,64) and EVENODD(288,256)

< Fault Tolerance

e TInject faults into protected region
e Aggressively spawn threads that illegally write to region
e Tnject faults while performing valid writes to the region

* Raw write performance
* (Gives overhead for each prototype component
* File system write performance
* Use a metadata write-centric workload
+ Consistency Check Latency
2 isspyse same write-centric workload
g ('S

= S

Performance: Fault Tolerance

* Targeted entire 200 MB region

e Performed 250,000 16-byte writes
e Injected invalid writes while running workload

* Roughly 10,000 invalid writes were injected
e 180-237 injected writes escaped page protection

e 89-94% of these are caught by the EVENODD
° Why not 100%?

- Injected writes over-written by valid writes

Performance: Raw Writes

* Most of the time is spent ® mprotect @ decode
¢ mpr'oTec’r encode @® structure

e Mprotect: system call to
protect memory

* Takes roughlé3 seconds

to perform 250,000

writes

o “Bl_ock" writes: small
writes coalesced

“ Without mprotect the
same workload takes 1
second

File System Performance with
Consistency Checking

<+ Create 100 directories 300

* Write 100-500 files to
each directory

“* Create links for each file
* Perm changes to file

No
(O]
o

N
-
o

G;
o

metadata

* Tests run with
e Full protection
* No mprotect 0
e Only logging
e Vanilla LiFS

o
S

Latency (seconds)

U1
o

100 200 300 400 500
Files per directory (100 directories)
O ALL_PROT 256 O ALL_PROT 64

NO_PROT_256 O NO_PROT_64
’i iSfDH O LOGGING ONLY ©O LiFS —

oA Ea—
A’ e

Performance: On-Line Check

* Generated a log in LiFS

e Same as latency workload (100 dirs/100-500 files)
e Created 120,500-2.1 million operations

* Ran consistency checker outside of LiFS
e Latency from less than 1 to 5.5 seconds

Related Work

* Queryable file systems
e Expressive queries
e Links don't have attributes (only files)

e Advanced commercial file systems
- Spotlight (Apple)

- ZFS (Sun)
- WIinFS (eventually...)
e Somewhat slow: information on disk

* In-memory file systems
e Lack advanced file system features (links, searching)
* No compression

e Often treat memory as a block device (flash RAM)
* Database research on utilizing persistent memory

’;:sThe Semantic Web

Future Work

% Push LiFS with these mechanisms into the kernel
* Distributed metadata using LiFS-based models
* RAID algorithms on multiple banks of MRAM

* Explore different approaches to data structures
and compression

* Coding
* Incorporate logging code for extents and x-attrs
e Integrate the consistency checker into LiFS

e Experiment with other ECCs

e Allow communication between the MRAM-level
mechanisms and the consistency checker

Slg
o
. > ISSDM
2

e J—

Conclusions

* MRAM promises big improvements for file
systems
e Richer metadata

Higher performance

_ower space requirements

Higher reliability

* Linking file system provides functionality
currently unavailable

* Compression ensures that the metadata fits in
MRAM

* Error correction and online consistency checking
keep the metadata safe

- (29€ Syg,
Tejd Al
' ° ISssDM
. e
o — 2
o | s A
/ffu' :“"- A= S

Questions?

* Thanks to our sponsors:

 National Science Foundation
e SSRC industrial sponsors
e LANL

% Thanks to MRAM team members

e Carlos Maltzahn, Scott Brandt

e Sasha Ames, Nikhil Bobb, Karl Brandt, Nate Edel,
Kevin Greenan, Adam Hiatt, Owen Hofmann, Alisa
Neeman, Mark Storer, Deepa Tuteja

* http://www.ssrc.ucsc.edu/proj/scm.html

Ade Svea.
;‘;.fa I .I .. '.‘(.@-r;x
2 5

3 i : @
L\ - issom
/J/ffu :_1'-': J
== I

http://www.ssrc.ucsc.edu/proj/scm.html
http://www.ssrc.ucsc.edu/proj/scm.html

